INVESTIGATION OF SOLAR WATER HEATING SYSTEMS FOR INDUSTRIAL APPLICATIONS IN NORTHERN ETHIOPIA

Mulu Bayray Kahsay¹, Robel Cherkos² and Izael Pereira Da Silva²

¹Mekelle University, Mekelle (Ethiopia)

²Makerere University, Kampala (Uganda)

ISES World Congress, August 2011, Kassel, Germany

OUTLINE OF PRESENTATION

- Introduction
- Hot Water Demand in the Factories
- Solar Radiation Measurement and Estimation Models
- Overall Solar Energy System Design and Sizing
- Economic Analysis of the Solar Energy Systems
- Conclusions and Recommendations

INTRODUCTION

- Low temperature water heating for industrial process is one of the ideal applications for solar energy.
- The study was conducted at four factories, namely, a tannery, a particleboard factory, a textile factory and an edible oil factory.
 - The factories use hot water for different processes,
 - The daily hot water consumption is high but require low temperature hot water (<80°C).
 - The current source of energy for water heating mainly furnace oil.

Introduction

• Sheba Tannery: Sheep and goat skins= 6,000 pcs/day

Hides = 500-600 pcs/day

Maichew Particleboard Factory: 80 tons/day

• Bahirdar Textile Factory: Fabrics = 12 million m²/year

Yarn = 1000 tons/year

• Ashraf Edible Oil: 150,000 liters of refined edible oil/year

HOT WATER DEMAND IN THE FACTORIES

- A study was made during regular operation of the factories for one week and includes identifying:
 - process demanding hot water,
 - working temperature of the process,
 - hourly consumption of hot water and
 - current source of energy for heating water.

HOT WATER DEMAND IN THE FACTORIES

Summary of results of the study:

No.	Factory	Process	Working Temperature (°C)	Consumption (m ³ /day)	Current Source of Energy
1.	Sheba	Skin Tanning	35	18.4	Furnace oil for
	Tannery	Skin Re-tanning	50	66.6	a steam boiler
		Hide Tanning	40	29.3	
		Hide Re-tanning	65	27.0	
2.	Maichew	Glue	40	6.0	Furnace oil,
	Particleboard	preparation			fire wood
		Impregnation	55	1.2	
3.	Bahirdar	Pre-heater	60	36.0	Furnace oil for
	Textile	Washing	70	7.8	a steam boiler
		Chemical	80	5.2	
		Preparation			
4.	Ashraf	Conditioning	85	6.0	Furnace oil for
	Edible Oil	Degumming	90	5.0	a steam boiler
		Neutralization	90	5.0	
		Washing	70	7.7	

HOT WATER DEMAND IN THE FACTORIES

Variation of the demand during a day:

Sheba Tannery

Maichew Particleboard

- Long term solar radiation data is scarce in the country,
- The National Metrological Agency has long term monthly average sunshine hour data:

- Pyrheliometer and Pyranometer were installed at Mekelle University.
- Pyranometer data for one year was compared with estimation model data.

- Angstorm Page estimation model was employed to find the monthly average daily solar radiation (kWh/m² day).
- Similarly, model of Liu and Jordan was to estimate the beam and diffuse components.

• Comparison of the measured and result from estimation model at Mekelle:

• A method proposed by Collares-Pereira and Rabl based on the disaggregation of daily data in to hourly data has been used:

OVERALL SOLAR ENERGY SYSTEM DESIGN AND SIZING

• A unit flat-plate collector with a collector area of 2 m² is assumed in the design.

Collector Area (A _c)[m ²]	2	Tube Material	Copper
Collector Perimeter [m]	6	No. of Tubes	8
Depth of the Collector [m]	0.095	Tube Diameter [m]	0.022
Absorber Material	Steel	Insulation Material	Mineral wool
Thickness of the Absorber [m]	0.002	Edge Insulation Thickness[m]	0.025
Number of Glass Cover	1	Back Insulation Thickness[m]	0.05
Glass Thickness [m]	0.004		

• The overall heat loss coefficient for the collector (U_c) in the expected temperature range of application was found to be 8.6 W/m² °C. Similarly the heat removal factor (F_R) was found to be 0.85.

OVERALL SOLAR ENERGY SYSTEM DESIGN AND SIZING

• Based on the unit size of the collector and the hot water demand discussed previously, the number of collectors needed and the space requirement were calculated.

Factory	Energy Deman d (GJ)	Useful Heat Gain Unit Collector (MJ/m²)	Number of Collectors	Space requireme nt (m ²)	Storage Tank (m³)
ST	11.2	12	960	3200	2x50
BTF	5.2	13.5	384	1500	1x24
AEF	3.6	15	240	800	1x15
MPF	0.5	11	48	300	1x3.2

OVERALL SOLAR ENERGY SYSTEM DESIGN AND SIZING

Layout of the SHW systems

Sheba Tannery

Maichew Particleboard

ECONOMIC ANALYSIS OF THE SOLAR ENERGY SYSTEMS

- The factories in the study use mainly furnace oil for heating water. The heating value of furnace oil is about 35 MJ/liter and the price during the study period was USD 0.69 per liter.
- Assuming typical combustion efficiency of 0.8, the cost of energy becomes 0.09 USD/kWh.
- The following cost assumtions were made for the SWS

Assumption	Value
Unit cost of 2 m ² collector	USD 250
Life of the SWH system	15 years
Manufacturing and labor cost	10%
Operation and Maintenance	2%
Interest rate	10%

ECONOMIC ANALYSIS OF THE SOLAR ENERGY SYSTEMS

• The investment cost estimates were found for each factory.

		Estimated cost in USD			
No.	Cost item	ST	AEF	BTF	MPF
1	Collectors	240,000	96,000	60,000	12,000
	Storage tanks, pipelines				
2	and fittings	14,000	2,500	3,000	1,000
3	Manufacturing and Labor	30,000	12,000	8,000	1,600
	Total	284,000	110,500	71,000	14,600

ECONOMIC ANALYSIS OF THE SOLAR ENERGY SYSTEMS

- The cost of energy includes: i) investment cost for the SWH collectors, storage tanks, pumps and pipelines, ii) manufacturing and labor cost, iii) operation and maintenance cost.
- Payback period (PBP) and Life Cycle Cost (LCC) calculations were made.

	SWH	SWH	Cost of Energy (USD/kWh)		
	LCC	LCS	Furnace Oil		
Factory	(USD)	(USD)	SWH	only	Savings
ST	293,873	105,250	0.05	0.09	26%
AEF	118,496	58,480	0.05	0.09	33%
BTF	76,666	28,463	0.05	0.09	27%
MPF	15,875	6,652	0.05	0.09	30%

CONCLUSIONS AND RECOMMENDATIONS

- There is high hot water demand in tanneries and edible oil factories, medium demand in textile factory and low demand in particle board factory.
- o The cost of SWH is about 5 USD cents per kWh and the payback period will be 6 − 7 years.
- Clean energy at the same time 26-33% savings.

• It is recommended that after some detail optimization, factories may implement the study phase by phase.